X iv : d g - ga / 9 70 20 04 v 1 7 F eb 1 99 7 DONALDSON INVARIANTS FOR CONNECTED SUMS ALONG SURFACES OF GENUS 2
نویسنده
چکیده
We prove a gluing formula for the Donaldson invariants of the connected sum of two four-manifolds along a surface of genus 2. We also prove a finite type condition for manifolds containing a surface of genus 2, self-intersection zero and representing an odd homology class.
منابع مشابه
ar X iv : d g - ga / 9 50 70 04 v 1 2 4 Ju l 1 99 5 LOCALISATION OF THE DONALDSON ’ S INVARIANTS ALONG SEIBERG - WITTEN CLASSES
This article is a first step in establishing a link between the Donaldson polynomials and Seiberg-Witten invariants of a smooth 4-manifold.
متن کاملar X iv : q - a lg / 9 70 20 09 v 1 6 F eb 1 99 7 The Fundamental Theorem of Vassiliev Invariants
1 Topology (and Combinatorics) 3 1.1 Vassiliev invariants and the Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Hutchings’ combinatorial-topological approach . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Hutchings’ condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 A possible strategy. . . . . . . . . . . . . . . ...
متن کاملSeiberg-witten-floer Homology of a Surface times a Circle
We determine the Seiberg–Witten–Floer homology groups of the 3-manifold Σ × S 1, where Σ is a surface of genus g � 2, together with its ring structure, for a Spin� structure with non-vanishing first Chern class. We give applications to computing Seiberg–Witten invariants of 4-manifolds which are connected sums along surfaces and also we reprove the higher type adjunction inequalities obtained b...
متن کاملGluing Formulae for Donaldson Invariants for Connected Sums along Surfaces
Following our work in [18], we prove a gluing formula for the Donaldson invariants of the connected sum of two four-manifolds along surfaces of the same genus g, self-intersection zero and representing odd homology classes, solving a conjecture of Morgan and Szabó [14].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997